Smart Energy

Dall’intelligenza artificiale benefici per la bolletta energetica

L’ottimizzazone delle fasi produttive e l’adozione di appositi controllori basati sulla AI può portare a risparmi sino al 30%, evidenzia Ammagamma

30 Set 2022

I prezzi dei beni energetici hanno raggiunto quotazione record e, purtroppo, al momento non si intravedono grandi prospettive di miglioramento, tanto che la parola d’ordine è quella del contenimento dei consumi. Un percorso in cui anche anche le nuove tecnologie digitali possono giocare un ruolo importante, come abbiamo più volte raccontato su EnergyUp.Tech. Ne è convinta anche Ammagamma, società di data science e IA, che ha disegnato un percorso di adozione dell’intelligenza artificiale che abilita le aziende ad affrontare in maniera efficace il nuovo contesto e a raggiungere l’efficienza energetica, con risparmi energetici che possono arrivare al 30%.

Innanzitutto occorre ottimizzare la pianificazione complessiva di tutte le fasi produttive, considerando i consumi energetici di ogni apparato per una specifica lavorazione. Si usano, per ogni fase, quelli che consumano di meno, a parità di risultato finale. Ciò è possibile all’interno di grandi aziende ma anche nelle PMI, dove il consumo di energia diventa una delle cosiddette “funzioni obiettivo” del programma di ottimizzazione, con risparmi di energia anche superiori al 10%.

In secondo luogo, va considerata la produzione di energia rinnovabile: all’interno della pianificazione produttiva è possibile massimizzarne l’autoconsumo (aggiungendo a questo la previsione della generazione elettrica puntuale per sito) e aumentando i benefici economici e ambientali connessi, in quanto, si favorisce un consumo (tecnico) in loco senza gravare sulla rete di distribuzione.

Inoltre, esiste la possibilità di adottare dei veri e propri controllori predittivi che, in maniera automatica e supervisionata, gestiscano i BEMS per la climatizzazione degli edifici, sfruttando la previsione delle condizioni climatiche esterne e l’inerzia termica degli edifici. Ammagamma ha applicato algoritmi di IA adattivi, nel settore bancario, portando impatti significativi di ottimizzazione energetica pari al 13%, e nel mondo della GDO, con risparmi dal 10% al 20%, rispetto a una gestione “per fasce orarie” preimpostate. Il risparmio economico può crescere ulteriormente fino al 30% con l’acquisto spot di energia elettrica.

Un altro importante impatto deriva dall’applicazione di strumenti di manutenzione predittiva, che supportino l’individuazione di anomalie di consumo in maniera intelligente, dinamica e adattiva. Per esempio, prevedere il degrado di potenza di sistemi cogenerativi in un ambiente ceramico può portare all’efficientamento delle soste manutentive, aumentando la rendita dell’investimento fino al 2% per una data potenza installata. Un altro caso è la previsione della degradazione delle prestazioni dei pannelli fotovoltaici, che può minimizzare la rottura di stringhe e inverter e ottimizzare il costo/beneficio della pulizia superficiale, aumentando la resa degli impianti fino al 5%.

Nell’ambito della ristorazione è possibile raggiungere importanti impatti indiretti, derivanti dall’applicazione di una soluzione di IA, come nel caso di CIRFOOD, azienda specializzata nel settore della ristorazione collettiva e commerciale e dei servizi di welfare. Nell’ottica di aumentare il livello di sostenibilità e di efficienza dei processi dell’impresa, CIRFOOD ha implementato una soluzione di demand forecasting e di inventory optimization, sviluppata da Ammagamma, che ha portato a una riduzione del 15% del waste food, -111 tonnellate di stoccaggio medio, +94% referenze monitorabili e un aumento del 56% delle performance di previsione della domanda, con impatti positivi sulla gestione complessiva dei processi e un incremento di efficacia e tempestività di reazione alle esigenze di mercato.

Anche nel mondo Multiutility gli impatti indiretti possono essere consistenti: grazie a una migliore pianificazione dei percorsi dei mezzi per il monitoraggio delle reti gas e i servizi di assistenza ai clienti è possibile, per esempio, ridurre dal 10% al 15% i km percorsi con un notevole risparmio di carburante.

@RIPRODUZIONE RISERVATA
Argomenti trattati

Aziende

A
Ammagamma

Approfondimenti

D
Digitalizzazione per il settore Energy

Articolo 1 di 5